Проекция силы на ось
Решение задач на равновесие сходящихся сил с помощью построения замкнутых силовых многоугольников в большинстве случаев сопряжено с громоздкими построениями. Более общим и универсальным методом решения таких задач является переход к определению проекций заданных сил на координатные оси и оперирование с этими проекциями. Осью называют прямую линию, которой приписано определенное направление. Проекция вектора на ось является скалярной величиной, которая определяется отрезком оси, отсекаемым перпендикулярами, опущенными на нее из начала и конца вектора.
Проекция вектора считается положительной (+), если направление от начала проекции к ее концу совпадает с положительным направлением оси. Проекция вектора считается отрицательной (—), если направление от начала проекции к ее концу противоположно положительному направлению оси.
Рассмотрим ряд случаев проецирования сил на ось: [an error occurred while processing this directive]
1. Вектор силы
(рис. 12, а) составляет с положительным направлением оси х острый угол
. Чтобы найти проекцию, из начала конца вектора силы опускаем перпендикуляры на ось х; получаем
. (4)
Проекция вектора в данном случае положительна.
2. Сила
(рис. 12, б) составляет с положительным направлением оси x тупой угол
. Тогда
, но так как
Проекция вектора в данном случае отрицательна.
3. Сила
(рис. 12, в) перпендикулярна оси х. Проекция силы F на ось х равна нулю
Итак, проекция силы на ось координат равна произведению модуля силы на косинус угла между вектором силы и положительным направлением оси.
Силу, расположенную на плоскости хОу (рис. 13), можно спроектировать на две координатные оси Ох и Оу. На рисунке изображена сила
и ее проекции Fx и Fy, Ввиду того что проекции образуют между собой прямой угол, из прямоугольного треугольника АСВ следует:
Этими формулами можно пользоваться для определения модуля и направления силы, когда известны ее проекции на координатные оси.
Кинематика
Кинематикой называется раздел теоретической механики, в котором изучаются геометрические свойства механического движение тел, без учета их масс и действующих на них сил.
Под механическим движением понимается изменение с течением времени положение тела в пространстве по отношению к другим телам. Для того чтобы определить изменение положения тела по отношению к другому телу, с последним связывают какую-либо систему координатных осей, называемую системой отсчета. В зависимости от тела, с которым она связана, система отсчета может быть как подвижной, так и неподвижной. Тело движется по отношению к выбранной системой отсчета, если с течением времени изменяются координаты хотя бы одной из его точек; в противном случае тело по отношению к данной системе отсчета будет находиться в состоянии покоя. Таким образом, покой и движение - понятия относительные, зависящие от выбора системы отсчета.
Механическое движение происходит в пространстве и во времени. При этом пространство считается трехмерным евклидовым пространством. Все измерения в нем производятся на основании методов евклидовой геометрии. За единицу длины при измерении расстояния принят 1 метр. Время в механике считается универсальным, т.е. протекающем одинаково во всех системах отсчета. За единицу времени принимается 1 секунда.
Проекция векторной суммы на ось
Уравнения равновесия плоской системы сходящихся сил Сходящаяся система сил находится в равновесии в случае замкнутости силового многоугольника. Равнодействующая при этом равна нулю (
). Проекции равнодействующей системы сходящихся сил на координатные оси равны суммам проекций составляющих сил на те же оси Непосредственное применение условий равновесия в геометрической форме дает наиболее простое решение для системы трех сходящихся сил. При наличии в системе четырех и более сил рациональнее применять аналитический метод, который является универсальным и применяется чаще, всего.
Пара сил и ее действие на тело Две равные и параллельные силы, направленные в противоположные стороны и не лежащие на одной прямой, называются парой сил. Примером такой системы сил могут служить усилия, передаваемые руками шофера на рулевое колесо автомобиля. Пара сил имеет большое значение в практике. Упражнение
На главную |